DNA methylation and histone modifications of Wnt genes by genistein during colon cancer development.

نویسندگان

  • Yukun Zhang
  • Qian Li
  • Hong Chen
چکیده

This study aims to elucidate the epigenetic mechanisms by which genistein (GEN) maintains a normal level of WNT genes during colon cancer development. We have reported that soy protein isolate (SPI) and GEN repressed WNT signaling, correlating with the reduction of pre-neoplastic lesions in rat colon. We hypothesized that SPI and GEN induced epigenetic modifications on Sfrp2, Sfrp5 and Wnt5a genes, suppressing their gene expression induced by azoxymethane (AOM), a chemical carcinogen, to the similar level as that of pre-AOM period. We identified that in the post-AOM period, histone H3 acetylation (H3Ac) was downregulated by SPI and GEN at the promoter region of Sfrp2, Sfrp5 and Wnt5a, which paralleled with the reduced binding of RNA polymerase II. Nuclear level of histone deacetylase 3 was enhanced by SPI and GEN. The diets suppressed the trimethylation of histone H3 Lysine 9 (H3K9Me3) and the phosphorylation of histone H3 Serine 10 (H3S10P). Methylation of the specific region of Sfrp2, Sfrp5 and Wnt5a genes was increased by SPI and GEN, which was inversely correlated with the reduction of gene expression. Bisulfite sequencing further confirmed that dietary GEN induced DNA methylation at CpG island of the promoter region of Sfrp5. Importantly, this region includes a fragment that had decreased H3Ac. Here, we present a potential epigenetic mechanism by which dietary GEN controls the responses of WNT genes during carcinogen induction, which involves DNA methylation, histone modifications and their interactions at the regulatory region of gene.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Impression of Histone Modification and DNA Methylation in Gastric Cancer Development: Molecular Mechanism Approach

The epigenetic alterations like histone modifications , DNA methylation and others remarkable categories  including nucleosome remodeling and RNA mediated targeting have been strongly investigated  recently .In this way , beside the notable importance of DNA methylation ,the histone modifications are the most important issues in the  tumorogenesis and cancer progression. Moreover...

متن کامل

Genistein Affects Histone Modifications on Dickkopf-Related Protein 1 (DKK1) Gene in SW480 Human Colon Cancer Cell Line

Genistein (GEN) is a plant-derived isoflavone and can block uncontrolled cell growth in colon cancer by inhibiting the WNT signaling pathway. This study aimed to test the hypothesis that the enhanced gene expression of the WNT signaling pathway antagonist, DKK1 by genistein treatment is associated with epigenetic modifications of the gene in colon cancer cells. Genistein treatment induced a con...

متن کامل

اپی‌ژنتیک سرطان پستان: مقاله مروری

Stable molecular changes during cell division without any change in the sequence of DNA molecules is known as epigenetic. Molecular mechanisms involved in this process, including histone modifications, methylation of DNA, protein complex and RNA antisense. Cancer genome changes happen through a combination of DNA hypermethylation, long-term epigenetic silencing with heterozygosis loss and genom...

متن کامل

DNA methylation of tumor suppressor genes in hepatocellular carcinoma

The basic unit of chromatin is a nucleosome included an octamer of the four core histones and 147 base pairs of DNA. Posttranslational histones modifications affect chromatin structure resulting in gene expression changes. CpG islands hypermethylation within the gene promoter regions and the deacetylation of histone proteins are the most common epigenetic modifications. The aberrant patterns of...

متن کامل

Epigenetic Modifications of Host Genes Induced by Bacterial Infection

Introduction: Epigenetic mechanisms regulate expression of the genome to generate various cell types during development or coordinate cellular responses to external stimulus. While epigenetics is of fundamental importance in eukaryotes, it plays a different role in bacteria. This article uncovers the most important recent data on how bacteria can alter epigenetic marks and can also contribute t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Carcinogenesis

دوره 34 8  شماره 

صفحات  -

تاریخ انتشار 2013